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ABSTRACT

In this study a method of retrieving optimum information of typhoon tracks in a multimodel ensemble of

forecasts is explored. By treating the latitudes and longitudes of typhoon centers as components of two-

dimensional track vectors and using the full ensemble mean as a first guess, it is shown that such a two-

dimensional approach for the typhoon track forecast can be formulated as a multivariate optimization

problem. Experiments with five nonhydrostatic primitive equation models during the 2004–08 typhoon sea-

sons in the western North Pacific basin show some noticeable improvements in the forecasts of typhoon tracks

in terms of the forecast errors and track smoothness with this multivariate approach. The advantages of the

multivariate optimization approach are its portability and simplicity, which could make it easily adaptable to

any operational typhoon forecast center that synthesizes typhoon track forecast products from different

sources.

1. Introduction

Accurate typhoon (TY) track forecasting is a chal-

lenging problem due to the existence of unpredictable

components associated with large-scale flows and mul-

tiscale interactions of the TYs with the background en-

vironment (e.g., Lander and Holland 1993; Wu and

Emanuel 1993; Simpson et al. 1997; Ritchie and Holland

1997). While there has been some steady improvement

in hurricane track forecasts in the Atlantic basin during

recent decades (e.g., Brown et al. 2010), the TY track

forecasts in the western North Pacific (WPAC) have

some issues to resolve (Goerss et al. 2004; Kehoe et al.

2007; Payne et al. 2007). Complicated multiscale inter-

actions of the environmental flows with nearby topog-

raphy and frequent direct vortex–vortex interaction in

the WPAC often result in irregular TY paths (Cheung

and Chan 1999; Payne et al. 2007; Liu and Chan 2008;

Yang et al. 2008). An example of Typhoon Nari (2008)

with a three-loop track to the south of Taiwan together with

its multiple intensification phases demonstrates typically

unusual patterns of TY behavior in the WPAC (e.g.,

Huang et al. 2005; Yang et al. 2008). Another example is

Supertyphoon Parma (2009), whose track crossed the

northern tip of the Philippine several times before mak-

ing a southern turn and had its final landfall in northern

Vietnam. (More detailed reports on Typhoon Parma

can be found online: http://www.nasa.gov/mission_pages/

hurricanes/archives/2009/h2009_Parma.html.)

These examples highlight the complex TY movement

in the WPAC, where a single deterministic model fore-

cast may not capture the most likely TY track. Various

modeling factors contribute to uncertainties in the nu-

merical TY track forecasts, including model initialization,

boundary conditions, model resolution, or parameteri-

zation schemes. As a result, the ensemble approach with

either multiple models or a set of optimized initial con-

ditions for a model becomes a growing trend in opera-

tional TY track forecasts. Indeed, the ensemble technique

has long been employed in the hurricane track forecasts

in the past because the spread of the ensemble could

allow for an estimation of the forecast reliability in ad-

dition to the track forecast (e.g., Neumann and Pelissier

1981; Goerss 2000).

Formally, one can divide the production of ensemble

TY track forecasts into two stages. The first is to create

an ensemble of forecasts, and the second is to draw from

the ensemble the most information about TY movement.
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In the first stage, two approaches are generally used for

creating the ensemble. The first approach is based on a

set of initial conditions generated by an ensemble sys-

tem such as the ensemble assimilation Kalman filter or

the breeding method (see, e.g., Toth and Kalnay 1997;

Evensen 1994; Krishnamurti et al. 1997). The second ap-

proach relies on an ensemble of different models, some-

times referred to as the superensemble or multimodel

approach. In the second stage, the most common method

is to simply take a full ensemble mean. The advantage of

this ensemble mean approach is not only its simplicity

but also that, statistically, the ensemble mean has a stan-

dard deviation that decreases as a square root of the

number of the ensemble members (Daley 1992). Goerss

(2000) showed that the simple ensemble average (or

consensus forecast) derived from a combination of sev-

eral global and regional operational models could indeed

help improve the quality of TY track forecasts at all lead

times. As will be shown in section 4, the simple ensemble

mean, nevertheless, quite often results in crisscross move-

ments due to the independent averaging of the latitudes

and longitudes of TY centers, especially when the number

of ensemble members is small.

Other TY track forecast treatments that have been

proposed specifically for TY track forecasts include the

selective mean (Payne et al. 2007), the cluster mean

(Zhang and Krishnamurti 1997), and the ensemble linear

regression (Leslie and Fraedrich 1990). Although each

has its own advantages, the recent study by Payne et al.

(2007) appeared to show that the selective mean tends to

have the best performance. In a different manner, Weber

(2003) presented an effective ‘‘downhill’’ method for es-

timating hurricane centers based on information related

to hurricane structure, location, and motion in the season

preceding the forecast period. Using the downhill tech-

nique, the hurricane centers can be estimated as the loca-

tions with the maximum probability. While this probability

approach is systematic, it requires substantial amounts

of information, such as maximum surface wind, radius of

maximum wind, radius of the outermost closed isobar,

or the radii of 35- and 50-kt winds, that are not always

available operationally in the WPAC, especially at the

warning centers for developing countries within the WPAC

region [winds of 35 and 50 knots (kt) are equivalent to 18.0

and 25.7 m s21, respectively, where 1 kt 5 0.514 m s21].

Given the current uncertainties in our understanding

of TY dynamics and a wide range of TY models, a

question of interest is how to retrieve the maximum

information of TY movement out of the ensemble out-

puts. Unlike the ensemble forecast of scalar quantities

such as temperature or humidity for which a single

regressive equation could give the best estimation, the

ensemble TY track forecast requires a simultaneous

prediction of both the latitude and longitude of a TY

center. Because forecasting models tend to have a sys-

tematic bias, some cross correlation between the lati-

tude and longitude errors of the forecasted TY centers

always exists. Thus, the simple ensemble mean of ei-

ther latitude or longitude separately appears to discard

a significant piece of information. In addition, each

model has its own accuracy for a certain forecast range

and region. In this study, an ensemble method will be

presented for the TY track forecast that can retrieve the

maximum information of TY movement from an en-

semble of model outputs. The main objective is to take

into account the cross correlation of the latitudinal and

longitudinal forecast errors such that the ensemble track

forecast will have the fewest errors at each forecast

range.

In the next section, detailed formulation for the ap-

plication of multivariate optimization to the TY track

forecast will be presented. Sections 3 and 4 describe the

model configuration as well as the dataset used in our

ensemble experiments. In section 5, comparisons between

different ensemble mean approaches and the multivariate

optimization will be discussed. Some discussion and our

conclusions are given in the final section.

2. Methodology

As mentioned above, the forecasting of TY tracks

differs from that of scalar variables since both the lati-

tudes and longitudes of TY centers are required at the

same time instead of a single value. If the latitudinal and

longitudinal forecast errors of the TY centers are sta-

tistically independent, it would be reasonable to opti-

mize the latitudes and longitudes separately using the

linear regression approach (e.g., Leslie and Fraedrich

1990). In reality, the latitudes and longitudes always

have some cross correlation since TYs move with the

environmental steering flow. Therefore, a two-dimensional

track vector needs to be simultaneously forecasted.

Given a set of ensemble track forecasts from different

models, predicting the track thus becomes a multivariate

optimization problem. Note that some models have

more forecast skill than others at short forecast lead

times but may have lower skill at the longer ranges. As

a result, it would be desirable to take into account such

time-dependent accuracies of different models in the

ensemble forecast. Assume a set of M models has pro-

vided the center positions of a TY at forecast times of 12,

24, 36, 48, 60, and 72 h. A TY center position vector of

the ith model is defined as vi [ (xi, yi), where xi and yi are

the longitude and latitude, respectively. A simple en-

semble mean at each forecast time T is first calculated as

follows:
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v(T) 5

�
M

i51
vi(T)

M
, (1)

where M is the number of models. This ensemble mean

is taken to be the first guess of the center position at time

T. The advantage of using such an ensemble mean as the

first guess of the TY location is that the mean value is the

first-moment approximation that tends to converge to an

expected value when the number of ensemble members is

large (Goerss 2000). The objective of this study is to im-

prove this first guess by adding some further corrections,

based on the accuracy of each individual model at each

lead time T, as follows:

v(T) 5 v(T) 1 �
M

i51
Wi(T)[vi(T) 2 v(T)], (2)

where Wi(T) is the 2 3 2 matrix specifying the weight of

the each model that varies with forecast lead time T. The

time dependence of these weight matrices is expected as

each model has its own skill at different forecast ranges.

This approach differs from the Leslie and Fraedrich (1990)

regression equations in that the regressive linear com-

binations of the latitudes and longitudes are not calcu-

lated directly, as this will occasionally cause the track to

have discontinuous jumps. Furthermore, the multivari-

ate optimization ensures that the corrected track will not

greatly deviate from the ensemble mean value, which is

desired when the number of ensemble models is large

enough. The aim now is to find the corrections to the

ensemble mean in (2) such that information from the best

models can be taken into account as much as possible.

Finding the weight matrix Wi(T) is essentially the

multivariate linear regression problem (Daley 1992), in

which the weight matrix W
i

can be obtained by mini-

mizing the residual error vector e(t) defined as

e(T) 5 vt(T) 2 v(T) 2 �
M

i51
Wi(T)[vi(T) 2 v(T)], (3)

where vt(T ) denotes the TY best-track vectors from

previous observations. Standard multivariate minimiza-

tion calculations with the residual error vectors e(T)

given by (3) lead to

Wi(T) 5 B(T)[Ri(T) 1 B(T)]21, (4)

where B(T) is the error covariance matrix for the en-

semble mean and Ri(T) is for each member i of the

ensemble, which are, respectively, given by

B(T) 5 Ef[v(T) 2 vt][v(T) 2 vt]
Tg and (5)

Ri(T) 5 Ef[vi(T) 2 vt(T)][vi(T) 2 vt(T)]Tg. (6)

Here, Ef�g denotes the statistical expectation operator.

Given a set of the track forecasts generated by all

models and the corresponding best-track data, the error

covariance matrices B(T) and Ri(T) can be calculated

during the training period. Since the performance of each

model varies with forecast seasons and basins, one should

in principle construct these error covariance matrices for

different months and different basins. Due to the short-

age of data and computational resources in this study, the

error covariance matrices B(T) and Ri(T) are assumed to

be constant for the entire forecasting season. In addition,

the application here is limited to TYs in the South China

Sea, which is the domain of interest due to their direct

impacts on Vietnamese coastal areas.

For comparisons of the impact of the different en-

semble means, three ensemble mean approaches men-

tioned in section 1 are also examined: 1) the full ensemble

mean, in which the simple mean of all members is com-

puted; 2) the cluster ensemble mean, in which a cluster

analysis is performed and the cluster with the largest

number of members is selected; and 3) a selective mean,

in which the outliers of the ensemble track are excluded

in calculating the mean track, which is similar to the

selective consensus method in Payne et al. (2007). Note

that in the third approach, only model track vectors in

the 12-h forecast that have the largest deviation from the

ensemble mean are omitted.

3. Model

In this study five nonhydrostatic primitive equation

models are used to generate a set of track forecasts for

TYs in the past. The models include the Weather Re-

search and Forecasting Model (WRF, version 2.1.2), the

Eta Model [International Centre for Theoretical Physics

(ICTP) version 2005], the fifth-generation Pennsylvania

State University–National Center for Atmospheric Re-

search (Penn State–NCAR) Mesoscale Model (MM5),

the Regional Atmospheric Modeling System Model

(RAMS), and another version of RAMS in which a

bogussed vortex initialization is activated when a de-

pression can be identified (RAMB).

All models are initialized with Global Forecast Sys-

tem (GFS) initial conditions with a resolution of 18 3 18,

available from the National Centers of Environmental

Prediction (NCEP), and with lateral boundary conditions

updated every 6 h. The models are configured with a single

domain of 161 3 161 grid points, 26 vertical levels, and

resolution of 28 km that is centered at (158N, 1108E).
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This horizontal domain covers the entire Vietnam and

South China Sea area with northern and southern

boundaries at 258S and 358N, which is large enough to

include part of the equatorial circulation, the Siberian

high, and the western North Pacific subtropical high

(Fig. 1). This domain has been selected based on nu-

merous observational and modeling studies to include

those synoptic-scale systems that influence the TY move-

ment in the desired area (Fig. 1).

The WRF, MM5, RAMS, and RAMB’s physical

schemes used in this study are (i) the Kain and Fritsch

(1990) cumulus parameterization scheme in which deep

convection and a broad range of shallow convection pat-

terns are both parameterized, (ii) the Yonsei University

planetary boundary layer (PBL) parameterization with

the Monin–Obukhov surface layer scheme, (iii) the Rapid

Radiative Transfer Model (RRTM) scheme for both

longwave and shortwave radiation with six molecular

species (Mlawer et al. 1997), and (iv) the Lin et al. (1983)

cloud microphysics scheme with six classes of hydro-

meteors, namely, water vapor, cloud water, rain, snow,

graupel, and cloud ice. For the Eta Model, the default

longwave scheme (Lacis and Hansen 1974), the shortwave

scheme (Fels and Schwarzkopf 1975), and the Ferrier

et al. (2002) microphysics scheme are chosen. See Table 1

for a summary of each model’s configuration.

Although it would be desirable to use as diverse a set

of different physical parameterizations as possible such

that the ensemble would include a larger spread of TY

movement, the forecast track difference due to various

treatments of the dynamical core, finite-difference grids,

surface layers, or boundaries among ensemble models is

in practice sufficiently large that no attempt at using

multiple physics is employed. Despite using the same

physical parameterization schemes, the spectrum of the

TY intensities and tracks from different models is

believed to be wide enough to ensure the statistics of the

TY movement, as will be seen in section 5. It should be

FIG. 1. Model domain for the ensemble experiments during the 2004–08 western North

Pacific typhoon seasons together with the best tracks of the typhoons. Blue dots indicate the

first GFS initial position of each typhoon.

TABLE 1. Summary of the models and their physical parameterizations used in the ensemble forecasts.

Model Microphysics Surface PBL Cumulus Radiation

WRF Lin et al. Noah YSU Kain–Fritsch RRTM

MM5 Lin et al. Noah YSU Kain–Fritsch RRTM

Eta Ferrier et al. Noah Mellor–Yamada 2.5 Kain–Fritsch Lacis and Hansen 1974

RAMS Lin et al. Noah YSU Kain–Fritsch RRTM

RAMB Lin et al. Noah YSU Kain–Fritsch RRTM
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mentioned also that the use of the above five regional

models is not based on their previous qualified perfor-

mances in TY track forecasts. Instead, these models are

needed simply to create a dataset of TY track forecasts

that can be used to examine the performance of differ-

ent ensemble mean methods. As a result, no attempt has

been made to optimize the model physical parameteri-

zation schemes, tuning parameters, or configuration in

these models for the track forecasts.

4. Data

To obtain the error covariance matrices B(T) for the

first guess (i.e., ensemble mean) and Ri(T) for each

member at each forecast time T, experiments were

conducted with all five models for a set of TYs for which

the best-track data were available. To generate a num-

ber of history cases that is as large as possible within our

computational capability and the data available, each

model was integrated for K 5 52 typhoons during the

2004–08 WPAC typhoon seasons (see Table 2 and Fig. 1

for the initial locations of the TYs). Note that these ty-

phoons are only a subset of the total number of TYs in

the WPAC during this period. The reason for choosing

these TYs is simply because they had a history of sig-

nificant impacts on Vietnam, and their best-track data

for the model integrations were available.

For each typhoon i and model m, Lim(T) T-hourly (T-h)

forecasts are made. Each T-h forecast is defined as

a model integration with an updated GFS initial con-

dition for T hours. For example, a 72-h forecast for

Typhoon Damrey (2005) starting at 0000 UTC 18

September 2005, and a 72-h forecast for the same typhoon

starting at 0000 UTC 19 September 2005, are considered

as two different forecasts (hereafter referred to as cases).

To avoid a potential serial correlation between two

consecutive GFS initializations for one specific typhoon

(Aberson and DeMaria 1994), only initializations sep-

arated at least 12 h apart are counted as different cases

(due to different environmental conditions and timing,

forecasts for different typhoons are always considered to

be different cases). So, the total number of cases gener-

ated by the model m at the lead time T is N
m

(T) 5

�K

i51Lim(T). Note further that each typhoon has its own

lifetime that may or may not be as long as T-h for the

forecast lead time T. In addition, not all models could

make a successful T-h forecast as a TY might have dis-

sipated before T hours due to the model’s own dynamics

and physics. Thus, it is not always possible to make an

entire T-h forecast for all of the TYs, and the number of

the cases will vary not only with T but also with each of

the models. To simplify the statistics and notation, only

the T-h forecasts for which the T-h tracking is successful

TABLE 2. List of 52 typhoons during the 2004–08 western North

Pacific typhoon seasons used for the training set and independent

cases (boldface) with the starting and ending dates of the typhoons,

maximum surface wind speed (kt), and the category of each ty-

phoon. These typhoons were selected because they had some in-

fluence on the Vietnam coastal areas.

Typhoon Date Vmax (kt) Category

Chanthu 9–13 Jun 2004 75 1

Kompasu 13–16 Jul 2004 45 TS

Muifa 14–26 Nov 2004 115 4

Conson 4–11 Jun 2004 95 2

Mindulle 23 Jun–4 Jul 2004 125 4

Nida 13– 21 May 2004 140 5

Rananim 7–13 Aug 2004 90 2

Washi 28–31 Jul 2005 ,35 TS

Vicente 15–18 Sep 2005 40 TS

Damrey 21–27 Sep 2005 90 2

Roke 13–17 Mar 2005 65 1

Haitang 11–19 Jul 2005 140 5

Matsa 31 Jul–6 Aug 2005 90 2

Sanwu 10–13 Aug 2005 65 1

Talim 26 Aug–1 Sep 2005 125 4

Khanun 5–11 Sep 2005 115 4

Kai_Tak 28 Oct–2 Nov 2005 90 2

Tembin 7–11 Nov 2005 45 TS

Bolaven 13–20 Nov 2005 75 1

Longwang 25 Sep–2 Oct 2005 130 4

Chanchu 8–18 May 2006 135 4

Jelawat 26–29 Jun 2006 45 TS

Prapiroon 31 Jul–3 Aug 2006 70 1

17W 22–25 Sep 2006 ,35 TD

Xangsage 25–30 Sep 2006 125 4

Cimaron 27 Oct–4 Nov 2006 140 5

Saomai 4–10 Aug 2006 140 5

Kaemi 21–25 Jul 2006 85 2

Bilis 9–14 Jul 2006 55 TS

Bopha 6–10 Aug 2006 50 TS

Shanshan 10–17 Sep 2006 120 4

Chebi 9–14 Nov 2006 115 4

Durian 26 Nov–5 Dec 2006 135 4

Utor 7–14 Dec 2006 100 3
06W 2–6 Aug 2007 ,35 TD

Habigis 18–27 Nov 2007 85 2

Wutip 7–9 Aug 2007 40 TS

Sepat 12–19 Aug 2007 140 5

Wipha 15–19 Sep 2007 135 4

Francisco 23–25 Sep 2007 45 TS

Krosa 1–8 Oct 2007 130 4

Mitag 20–27 Nov 2007 95 2

Pabuk 5–9 Aug 2007 65 1

Lekima 30 Sep–3 Oct 2007 70 1

Peipah 3–9 Nov 2007 75 1

Neguri 14–19 Apr 2008 95 2

Jangmi 26–28 Sep 2008 70 1

Fengshen 17–25 Jun 2008 110 3

Nuri 16–23 Aug 2008 100 3

Hagupit 17–25 Sep 2008 125 4

Higos 23 Sep–1 Oct 2008 140 5
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for all models are chosen so that Nm(T) 5 N(T) for all

models. Table 3 lists the total number of cases at each

forecast lead time T.

Thus, a set of N(T) T-h forecasts for all TYs has been

generated for each of five models in which each forecast

is a set of two-dimensional vectors, vi(T) 5 [xi(T ), yi(T )],

where xi(T ) and yi(T ) are the longitude and latitude of

the TY center of the ith forecast at time T, respectively.

Note that the index i from 1 to M 5 5 indicates the

forecast made by the ith model. Because the best-track

data are available for all TYs during the training period,

the error matrices B(T ) and R
i
(T ) can be computed

quickly using Eqs. (5) and (6) in which the expectation

operator Ef�g is simply an average from i 5 1, . . . , K. An

independent dataset of eight typhoons including Chanthu

(2004), Kaitak (2005), Chanchu (2006) Xangsage (2006),

Utor (2006), Durrian (2006), Depression 06W (2007), and

Lekima (2007) are selected because their tracks had either

sharp changes in direction or had sudden deceleration

and/or accelerating movements that most of the models

could not capture individually. Note that since the main

objective of this study is to examine the relative perfor-

mance of the ensemble postprocessing techniques, the size

of the independent dataset is not essential. Numerous

experiments with independent datasets of different sizes

have been conducted and all showed consistent results. So

we hereinafter present results with the independent

dataset containing eight typhoons as listed above.

5. Results

a. Individual model performance

The total, the cross-track, and the along-track forecast

errors of each of the individual models for the training

dataset are first shown in Fig. 2. Overall, all models have

fairly consistent total mean errors, which are roughly

;198 km at 24-h, 287 km at 48-h, and 395 km at 72-h

forecast lead times (Fig. 2a). These mean errors are

noticeably higher than those documented in the Atlantic

Ocean basin from the NCEP/National Hurricane Center

(Pike and Neumann 1987; Brown et al. 2010), which may

be attributed partly to the present experiments that are

not fully optimized. However, the lower skill of the track

forecasts in the WPAC basin appears to be consistent

with the consensus forecasting in the Systematic Ap-

proach Forecasting Aid (Carr et al. 2001), which is based

on a consensus of three global and two regional models

and thus indicates to some extent the irregular patterns

in track behavior for TYs in the WPAC basin. Of the all

models, the WRF appears to be the most accurate at

long lead time, with 72-h mean error of ;349 km, as

compared to the other models. For the shorter forecast

intervals, the Eta and RAMS consistently perform

TABLE 3. Total number of cases at each lead time in the training

set for all models. A case is defined as a model integration initial-

ized from one GFS update cycle in which the TY center can be

detected with a corresponding forecast lead time. Each of the ty-

phoons listed in Table 2 could generate many cases depending on

the number of initializations (see text for more details).

Forecast lead time (T, h) No. of cases

6 320

12 311

18 302

24 290

30 216

36 203

42 234

48 220

54 201

60 187

66 165

72 147

FIG. 2. Mean track errors (km) for RAMS (solid), RAMB (dashed),

Eta (dotted), WRF (dotted–dashed), and MM5 (dotted–dotted–

dashed) for the (a) total, (b) along-track, and (c) cross-track errors.
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better, with mean errors ;110 km at 12-h and ;170 km at

24-h lead time.

It is worth mentioning that except for RAMB, for

which a bogussed vortex is inserted into the initial con-

ditions according to the best-track location, the initial

positions of the TYs in all other models contain some

initial error (;50 km; Fig. 2a). This initial error is mostly

caused by the coarse resolution of the GFS data used to

initialize the forecasts in this study. In addition, such

incorrect initial positioning could be related to some

other factors such as the center-tracking algorithm, or

some difference between the initial positions in the GFS

and the best-track analysis. Except for experiments with

RAMB, no attempt has been made to relocate the TY

centers for other models in this study, as the main ob-

jective is focused more on the relative effectiveness of

different ensemble mean methods.

In terms of the along-track errors (Fig. 2c), the RAMS

and RAMB have the worst performance at long lead

times, with 3-day errors of roughly 350 km. Examination

of the large-error cases created by the RAMS and

RAMB shows that these models tend to produce ab-

normally strong subtropical ridges over central China,

which seem to slow down the westward movement of

TCs and lead to larger eastward biases as compared to

the other models. Previous studies have shown that the

along-track errors tend to be larger than the cross-track

errors (see, e.g., Buckingham et al. 2010). However, com-

parison of the along-track and cross-track mean errors in

Figs. 2c and 2d shows that the WRF and Eta do not

exhibit such statistics, especially the WRF during the

first 36 h of the model forecasts. This appears to indicate

that the WRF could capture fairly well the translational

speed but has some systematical bias across the track. As

pointed out in the recent studies by Kehoe et al. (2007),

the source of such large cross-track errors could be at-

tributed to either the physical processes that are poorly

represented by the models or to strong interactions with

nearby cyclones or midlatitude influences.

While the performance of the models in all of the

experiments is obtained for the configuration at 28-km

resolution and the specific parameterizations discussed

in the section 4, several experiments with higher reso-

lution did not show significant track error differences.

The exception was the WRF, which had a slight improve-

ment in its along-track error forecast (not shown). Due

to the limited computational resources, higher-resolution

forecasts for all 52 TYs could not be carried out, and the

mean errors shown in Fig. 2 will be considered hereafter

to be a benchmark for later verification.

The cross correlations between the latitudinal and

longitudinal error positions, which are the basis for the

multivariate optimization presented in Section 2, are

shown in Fig. 3. These cross correlations of the latitudinal

and longitudinal errors are the off-diagonal components

of the matrix R
i
(T) in Eq. (6). Although these correla-

tions are small for the first 12 h, they increase with time

and reach magnitudes of ;0.3–0.4 after 54 h. This sig-

nificant correlation indicates that independent ensemble

averages of the latitudes and longitudes of TY centers

would become inaccurate at longer lead times. In gen-

eral, correlation exists between the total mean error and

the correlation between the latitudinal and longitudinal

errors; the larger the total mean error is, the larger the

correlation is. The negative correlations between lat-

itudinal and longitudinal errors in the RAMS and MM5

imply that the negative latitudinal errors due to a slow

translational speed of a TY would correspond to posi-

tive longitudinal errors. As a result, the TY centers in

these models tend to stay in the southeastern quadrant

with respect to the best-track center for westward-moving

TYs, consistent with the along-track errors (Fig. 2b).

The high correlation between the latitudinal and lon-

gitudinal track error suggests that any good ensemble

mean should take this information into account so that

the retrieval of ensemble information is maximized.

While the focus here is on the TY tracks, it is noted

that all models have fairly low skill in intensity fore-

casting, especially during the rapid intensification. Of

all of the models, only MM5 and RAMB seemed to be

capable of occasionally capturing some phases of the

intensity change. Reasons for such low skill in simulating

intensity changes could be related to the coarse horizontal

model resolution used in this study and insufficient in

situ observation data for TYs in the WPAC basin. Inclusion

of radar and satellite observations in the models will be

presented in a future study.

b. Ensemble track forecasts

In this section four different ensemble mean methods

for processing multimodel outputs are compared. The ob-

jective of the comparisons is to examine the performance

FIG. 3. As in Fig. 2, but for the cross correlation between latitude

and longitude track errors computed for the training dataset.
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of the multivariate ensemble mean (MEM) relative to

the simple full ensemble mean (FEM), the cluster en-

semble mean (CEM), and the selected ensemble mean

(SEM) methods discussed in section 2. Due to the small

number of models, it is not always possible to identify

different clusters in the CEM approach. So only cases

where two distinct clusters can be identified are counted

in the CEM mean. Similarly for the SEM approach, only

cases in which outliers can be definitely detected are in-

cluded in this mean calculation.1

Comparisons of the various ensemble means for eight

independent typhoons and for the dependent cases are

given in Fig. 4. Table 4 offers a list of the dependent

cases corresponding to each forecast lead time. In gen-

eral, all methods give a similar result for the first 36 h with

mean errors of ;150 km for the 24-h forecast. At the later

36 h, MEM has the smallest errors with 72-h track er-

rors (;325 km) as compared to FEM (355 km), CEM

(381 km), and SEM (383 km) at the 95% confident level.

The better performance of either CEM or SEM as

compared to the FEM approach at the later time may

be understood if one recalls that the RAMB tends to

produce increasingly large cross-track errors with time.

So, eliminating the RAMB forecasts in the CEM and

SEM approaches could indeed reduce the total track

FIG. 4. Total track errors (km) for four different ensemble mean methods including FEM

(medium gray), CEM (white), SEM (light gray), and MEM (dark gray) with the (a) training and

(b) independent datasets.

1 For the sake of automatic computation, an outlier is detected

when its 1-day error relative to the ensemble mean is larger than

250 km.
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error. The better performance of the MEM approach

in reducing the total track mean error is most evident

after 36 h when the correlation between the latitudinal

and longitudinal track errors becomes significant (Fig. 3).

During this later period, the high correlation of the

track errors results in more constrained correction to

the first guess since the MEM method uses the full en-

semble mean only as the first guess and then corrects

the mean value according to the accuracy of each model

(cf. Fig. 3).

Although the actual percentage of the track error

reduction may vary with the numbers of the ensemble

models or the size of the training/independent dataset, it

should be noted that the relative improvement of the

MEM approach with respect to other ensemble mean

methods is still noticeable for all sizes of the independent

dataset. Experiments with the size of the independent

dataset varying from 2 to 12 TYs all confirm the im-

provement found in the MEM approach. The larger size

of the independent dataset (.12 TYs) will nevertheless

result in insufficient statistics for the weight matrices,

thus causing the ensemble mean tracks to be nearly in-

distinguishable among different methods.

In addition to reduced track mean errors, the MEM

approach produces TY tracks that are smoother when

the number of ensemble models is small. This im-

provement is a result of the latitudes and longitudes of

the TY centers not being independently corrected due

to their cross correlation, thus preventing sharp jumps

in the averaged latitudes and longitudes. To illustrate

this point, the 72-h forecasts for Utor initialized at

1200 UTC 11 December 2006, Chanthu initialized at

1200 UTC 12 June 2004, Durian initialized at 0000 UTC

1 December 2006, and 06W initialized at 0000 UTC

3 August 2007 are shown in Fig. 5. Note that for the above

examples, initializations were selected such that one of

the model track forecasts is clearly deviating from the rest

of the forecasts. This ensures that both the CEM and the

SEM classifications can be applied. In these examples,

the CEM and SEM tracks are identical, as only one

model track (the WRF in the forecast of Utor and the

RAMB in the forecast of 06W, Chanthu, and Durian)

diverges far to the west compared to the rest of the

tracks. The smoothness of the track forecast in the MEM

approach can be seen evidently in Fig. 5 with most of

sudden jumps in Utor’s forecast locations during the first

18 h removed. The irregularities of the simulated track

during this period are caused by the interaction of Utor

with the Philippines archipelagic area. Similarly, the

sharp zigzags in the 06W, Durian, and Chanthu tracks

during the first 12 h are also removed in the MEM ap-

proach. Note that 06W was only a marginal tropical

storm at its peak intensity, which presented some chal-

lenges to predicting its movement and intensity. Appar-

ently, the predictability of 06W is quite low as all models

fail to capture its sharp turn as it changed its direction

suddenly near 0000 UTC 5 August (Fig. 5b). Since the

WRF model had shown the most consistent perfor-

mance in the training set (Fig. 4b), it is given more weight

in the MEM track forecast for Utor. The inclusion of the

WRF forecast, which is eliminated in the CEM and SEM

approaches, could indeed pull the track farther north

(not shown). In this case, the track would have been

closer to the observations that neither FEM nor CEM/

SEM could capture.

6. Conclusions

In this study a multivariate optimization approach to

extracting the most information about typhoon tracks

from a set of multimodel forecasts has been presented.

Unlike the ensemble forecast of a single variable for which

a simple ensemble mean can provide statistically mean-

ingful information about the predicted value, the typhoon

track forecast should be considered to be a multivariate

optimization problem in which the latitudes and longi-

tudes of forecast positions are treated as two-dimensional

vectors. The basis for such a two-dimensional approach

is based on the fact that the components of these track

vectors possess considerable correlation due to model

systematic biases. Such correlation increases with time

and becomes significant after 1 day into the forecast,

which suggests that separate ensemble averages of the

latitude and longitude of typhoon centers would lose

substantial information about the track constraint.

In the two-dimensional approach, the simple ensem-

ble mean was used as a first guess and the multivariate

optimization corrected this first guess with information

from each model, based on each model’s skill from a

training set. Experiments with five mesoscale models have

TABLE 4. As in Table 3, but for the number of independent cases

for eight typhoons given in Table 2.

Forecast lead time (T, h) No. of cases

6 135

12 115

18 104

24 95

30 88

36 83

42 77

48 76

54 65

60 58

66 49

72 36
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shown that the multivariate optimization overall provides

better performance both in terms of total errors and the

smoothness of the typhoon track forecast. For an inde-

pendent set of eight typhoons, the total track error was

reduced by about 5% as compared to the full ensemble

mean, selective mean, or cluster mean after 36 h of in-

tegration. The advantage of the multivariate approach is

its simplicity as it does not require overly detailed in-

formation. While we have presented only 72-h typhoon

forecast statistics due to computational constraints, the

multivariate approach in this study can be extended

readily to longer forecast lead times to extract the most

information from an ensemble of outputs. Provided that

a history of previous ensemble forecasts is made avail-

able, our approach will always allow for maximizing the

information of the TY tracks from the ensemble at all

forecast lead times.
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